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Paulo Goldfeld: Balancing Neumann-Neumann

e Balancing Neumann-Neumann for

— Incompressible Elasticity
— Compressible Elasticity
— Stokes

— Navier-Stokes by Newton-Krylov  (in
progress)

— Neumann-Neumann-like nonlinear precondi-
tioner for global nonlinear problem (planned)

e Implemented in PETSc, run on large clusters
such as Chiba City.

e Question: in PETSc LU for local Stokes or in-
compressible Elasticity breaks down with stan-
dard ordering, tricks needed. Other direct solvers
(SuperLU) ? Possibly adapted for saddle point
structure?

e Most CPU time: factorization of the local prob-
lems at start-up. Iterative methods do not seem to
be a viable alternative.

e Theory by Widlund and Pavarino



Jing Li: FETI-DP

e FETI-DP for

— Stokes

—Oseen

— Navier-Stokes by Newton-Krylov

— FETI-like preconditioner for global
nonlinear problem (planned)

e Sequential code in C++, implementation
iIn PETSc planned.

e Theory by Li (2 short papers).



Olof Widlund

e Theory for

— Neumann-Neumann

—FETI-DP methods (paper with Kla-
wonn and Dryja, to appear)

— Mortar methods

o fOr

— Stokes (paper just accepted)

—Incompressible and Compressible
Elasticity (almost complete paper)

— H(div), H(curl) (a few years ago)

e Nonlinear preconditioners (with: Xiao-
Chuan Cai).



Previous work in our group for H (div)
and H (curl)

e Lower order (usually first) Bdcelec ele-
ments

e Toselli: Overlapping Schwarz for
H(curl) (2D, 3D)

e Toselli and Hiptmair: Multilevel for
H(div) and H(curl)

e Toselli, Widlund, and Wohlmuth: Itera-
tive substructuring fo# (curl) (2D)

e Toselli: Neumann-Neumann for
H(curl)

e Toselll and Klawonn, Toselli and
Rapetti: FETI forH (curl)

¢ \Wohlmuth, Toselli, and Widlund: Itera-
tive substructuring fo (div) (2D,3D)



Bernhard Hientzsch: High order
Maxwell

e Fast direct solvers for rectangular do-
mains.

e Direct substructuring methods for do-
mains composed out of rectangular ele-
ments

¢ Helmholtz decomposition solvers
e Overlapping Schwarz methods

e Ilterative substructuring methods (in
progress), threedimensional implemen-
tation (in progress), ...

e Codes in MATLAB and some in C using
MPI for parallelization.

e Theory by Hientzsch extending analysis
by Toselli.



(au,v) + (B curlu, curlv) = f(v)

e Spectral Elements: Spectral Methods
(high accuracy, special structure) + Fi-
nite Element Methods (geometric flexi-
bility) + Numerical Integration

e DiscretizationKu« = M f has block ten-
sor product structure, allows fast compu-
tation ofw = Kw, and, for rectangular
domains, fast direct solversThose are
needed as local solvers and global coarse
solvers.

e Domain Decomposition approach leads
to quasi-optimal and parallel methods for
more complicated and larger examples.

e Preconditioners seem to be relatively ro-
bust with respect to moderate deforma-
tion of the geometry and mesh



Spectral Nedelec Elements for H(curl)

e [{!'-conforming elements: spurious eigenvalues
and unphysical continuity conditions

e Nécklec [Num. Math. '80, '86]. H(curl) con-
forming elements, d.o.f.: edge, face and interior
moments; Monk and otherap-, h/NV-extension

e Ben Belgacem and Bernardi [Math. Comp. '99]:
Spectral element method for Maxwell’'s equation.

e \We use spectral element type nodal degrees of
freedom, variable order Gauss-Lobatto-Legendre
quadrature, only tangential continuity.

e \We construct mapping between spectral element
and Necelec degrees of freedom for different de-
grees, and analyze the interpolation properties
and the stability of the local splitting for the
Néecelec interpolant.



The model problem
e Maxwell in £

1
e&fE + 00:E + curl (— curl E) = 04ji
[

e Implicit time integration:
au + curl(fcurlu) = f
¢ Variational form:
(au, V)2 + (Becurlu, curlv); = f(v)
e GLL quadrature:
(au,v)grr, + (Beurlu, curl v)qr, = far(v)
e Discretized form on one element (2D):
(ehec o) () - (1)
Bl oCcvl Ao My ) \u ) \ f
e Subassembling on rectangular arrangement with

appropriate degrees with tangential continuity
gives system matrix of the same structure



Modelproblem in 3D

Stiffness matrix has the form:

Cll 012 013
021 C122 023

C31 Csy Css

Cii = M,® (aM,®@ M, + (K,® M, + M, ® K,))
Co = Pl2(M,® (M, @ M, + (K, ® M.+ M, ® K.))) P>

yrz

Cy3 = (aM, @ M, + (K, @M, + M, K,)) ® 1,

012 - _D:U®l§y®Mz
013 — _Dx®My®Dz

021 — _ﬁx®Dy®Mz
023 = —M, ®Dy®Dz
031 — _D:U®My®Dz

032 - _Mx®l§y®Dz

with M one-dimensional mass matri¥x one-
dimensional Laplace]D and D combinations of
derivative and mass matricelB,transposition of the
3D array.



Algorithms:

¢ Direct block tensor solver

e Direct substructuring solver

¢ Algorithmic components for DDM

e Overlapping Schwarz Preconditioners
¢ Helmholtz decomposition solvers



Direct block tensor solver (2D)

e Eliminate one component in block tensor product
system in both components to obtain generalized
Sylvester matrix equation in one component

(A9 B+C ® D)u; = f

e Solve Sylvester matrix equation by:

— Transformation to special form, use fast di-
agonalization method [Lynch et al, Num.
Math '64] (sometimes ill-conditioned eigen-
systems)

—Work on generalized Sylvester equation, use
Hessenberg or Schur forms [Gardiner et al,
ACM TOMS '92, Kagstbm, Poromaa ACM
TOMS '96]

e Setup takesO(n’) time, per right hand side
O(n?t) with s € [0,1] depending on the fast
matrix-matrix multiplication used.



Direct substructuring solver

e Form local Schur complements

e Subassemble local Schur complements
to Schur complement system on tangen-
tial components on element interfaces

e Subassemble right hand side for the
Schur complement system on the inter-
faces

e Solve the Schur complement system on
the interface

e Compute interior values in each spectral
element by one tangential value bound-
ary problem solve per element



Domain decomposition methods:
algorithmic components

e Compute residual

e Solve local problems with different
boundary conditions

¢ Solve low-order global problem

For direct and iterative substructuring meth-
ods :

e Form local Schur complement

e Compute right hand side for Schur com-
plement system

¢ Apply local Schur complement or its in-
verse to a vector



Overlapping Schwarz method:
Implementation in 2D

e Define overlapping subregiorg, ; C (2. Sev-
eral ways: extending coarse elements or subdo-
mains, or vertex-centered. Most of our computa-
tions:2 x 2 vertex centered domain decomposi-

tion.
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e Local spaces and solvers: take basis functions
associated to GLL points iR, ; (submatrix) .
Elementwise-overlap: standard tangential value
solve on 2x2 element$; C ND (1),

e Coarse space: low-order (spectral@dlec ele-
ments.Vy = ND;*(T%)



Overlap'olng Schwarz method:
overlapping subregions

Vertex centered domain decomposition:

Y
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Helmholtz decomposition solvers

o f = (al + fcurlcurlju

eUsef = cf(f)+df(f) = gradq + curl ®, ¢
scalar,® scalar (2D), vector (3D)

e On cf(u) operates as/, on df(u) operates as
al + BA.

e Suggests method like: computé( f) (Laplace),
computecf(u) = cf(f), find df (u) by solv-
Ing Helmholtz-type equation on components
(2D,3D) or potential (2D) with appropriate b.c.

e For some boundary conditions (e.g., natural), this
gives in 2D a spectrally convergent solver (nu-
merically); for others (f.i. essential = tangential),
only algebraic convergence (corner and edge ef-
fects) which can be improved but not (yet?) made
exponential



Some numerical examples

¢ Rectangular domain: convergence, some
timings

e L-shape domain: direct substructuring
solver

e Overlapping Schwarz Preconditioners:
results for one- and two-level methods



Direct solvers: Rectangular domain

5 x b spectral elements, degre& (x IV,

N x N). Different numerical integrations for
the mass matrix: exact integration and diag-
onal mass matrix. Block tensor and Inter-
face Schur complement solvers.

T
— Schur
— — Schur (diag. MM)
— - Blocktensor
-5 Blocktensor (diag. MM) |7

Ioglo(lerror|oo)
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Direct methods: Timings, block tensor
solver

5 x b spectral elements of degréé Exact
element matrices.

12

T T
— total CPU time
— — setup on element
— - subassembling
tensor product solve

CPU time in seconds




Direct methods: Timings, block tensor
solver

M x M spectral elements of degréex 10.
Exact element matrices.

CPU time in seconds

4.5 \ T
— total CPU time
— — setup on element
4L | — subassembling
tensor product solve
35F
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Direct methods: Timings, Schur
interface solver

5 x b spectral elements of degréé Exact
element matrices.

20

T T
— total CPU time
— — setup on element

18| - — subassembling
Schur and local solves
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Direct methods: Timings, Schur
interface solver

M x M spectral elements of degréex 10.
Exact element matrices.
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— total CPU time
— — setup on element
— - subassembling
Schur and local solves

CPU time in seconds
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Direct methods: Summary of
comparison (rectangular domain)

e Increasing/NV: in exponential convergence indis-
tinguishable, for largeN Schur solvers slightly
more accurate.

e Schur solver: out of memory af = 10 andN >
10. Tensor solver runs in memory for much larger
examples.

e Tensor solver: most time in subassembling, com-
puting eigenbases and inverses. Actual solve is
very fast & 2s for N = 50, M = 5, < 1s for
M =10, N = 10)

e Schur solve: most time in computing rhs, solv-
Ing Schur system and local systems. (Needs to
be done for each rhs.)

e Block tensor solver twice as fast, per rhs seven
times as fast fo’v = 50, M = 5. 20 times as fast
atM =10, N = 10, per rhs more than 100 times
as fast.



Schur interface solver on L-shaped
domain

Exact solution:

GLL grids with interface degrees of freedom marked by 'x’, for
degree 10:




Schur interface solver on L-shaped
domain

Error of the solution, for degree 10:

Maximum error of the solution over degréé of the spectral
elements:

Error for solution by Schur complement solve on L—shaped domain

Il Il Il Il Il Il Il Il
5 10 15 20 25 30 35 40 45 50
N — degree of spectral elements



Overlapping Schwarz method:
Numerical results in 2D

Comparison of different methods far = § = 1,
M =N =10:

# of levels iter | ke (K) ||lerrof|s |tepyins

(no pc) 3580| 1.44e+06 5.73e-05 448.6

one 31 38.2 |3.21e-06 7.6

two (N, =2)| 15 | 4.93 |3.78¢-06 3.8

two (N, =3)| 15 | 452 |9.95e-07 3.8

two (N, =4)| 15 | 451 |9.48e-07 3.9

two (N, =5)| 14 | 4.49 |1.88e-06 3.8




Overlapping Schwarz method: Results
for one-level methods

One-level method, using x 2 vertex cen-
tered domain decomposition, varying num-
ber of spectral elements of degrgex 10:
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Comparison of different methods for the2 x 2 vertex
centered domain decomposition forx = 6 = 1, N = 10.

# of levels

iter

/{est(K>

||error |

topu Ins

M =20

one

58

142.9

2.05e-06

4.4

two (NO = 2)

15

4.84

1.46e-06

19.6

two (N() = 3)

14

4.84

1.49e-06

18.9

two (NO = 4)

15

4.85

5.56e-07

20.7

M =30

one

85

316.0

1.59e-06

251

two (NO = 2)

15

4.91

1.03e-06

47.2

two (NO — 3)

15

4.93

3.74e-07

a47.7

two (No = 4)

15

4.93

3.11e-07

49.7

M =40

two (NO = 2)

15

4.95

7.24e-07

98.3

two (N() = 3)

15

4.96

2.66e-07

102.2

two (NO = 4)

15

4.96

2.15e-07

106.0




Overlapping Schwarz method: Results
for two-level method

Two-level method, using x 2 vertex cen-
tered domain decomposition, varying num-
ber of spectral elements, degrée x 10,
Ny = 3.
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M — number of SEMs in each direction



Overlapping Schwarz method: Results
for two-level method

Two-level method, using x 2 vertex cen-
tered domain decompositioh) x 10 spec-
tral elements, degre® x N, Ny = 2.

20

18-

16} i S o o o L L i o i i i e e e  E
TH+++++
14}

number of iterations

12 -

condition number

| | | | | | | |
10 15 20 25 30 35 40 45 50
N - degree of SEM in each direction



Domain decomposition methods:
condition number bound

Fixed and generous overlap:

smax(c, 3)

f(Tas2) < C(Ne+ 1) min(a, 3)

Minimal overlap:

(vertex-centeredi/h ~ N1, v < 0.5,
extended subdomaid/h ~ N2, v < 1)

K(Tyhs2) < C(Ne + 1)2](V7 ) 5
max(c, 3 H
min(a, B) (1 * <F> )

Limit casesae — 0 andg — 0 allow differ-
ent bounds, independent afor 3, respec-
tively.




Proof of the condition number estimate

e Uses the abstract Schwarz method
framework [e.g., Smith et al "96]

e \WWe use exact solvers, implying = 1.

e Largest eigenvalue is bounded by num-
ber of colorsN for overlapping subdo-
mains (4 in the x 2 case) plus one.

e Only part requiring work and thought:
lower bound for smallest eigenvalue.
Done by exhibiting splittingn = > u;
and estimating (from aboveX’? in
> a(u;, ;) < C%a(u, u)

e Extension of Toselli [Numer. Math. '00]
to spectral case (i.ely-dependence)



Condition number estimates: required
estimates

We reduced thé/-dependence in the condi-
tion number estimate to the following three
required estimates:

e Interpolation estimate on div-free
H(curl) with polynomial curl:

ND,I
|(I-IIN " )wllo < Chfi(N)|| curl wi|g

e L2-stability of local splitting:

ND.I
IIT 7" ()]0 < Cfa(N)||xqullo

e curl-stability of local splitting:
leurl (TLV” (xw) ) [lo < Cf5(N)| curl(yau) |

implied by L2-stability of local splitting
In a RT type space.



Domain decomposition methods:
condition number bound

o fi(N) = 1+ Cle)N~*¢ < 1+ C(e). In two
dimensions, and possibly (unproven) in three di-
mensionsf,(N) = C(e)N 1/,

e For generous overlag,(N) = f3(N) = 1 (ana-
lytic and numerical result).

e For minimal overlapd/h ~ N7% fo(N) =
f3(N) = N7, with v < 1 (numerical result).

Inverse of smallest eigenvalue is bounded by:
max <C’NC (1+ %) ,Cﬁ?iégg))(l + N.f5(N)),

2
custed Ly o) (1 (22 ) ),

In the moment we run extensive numerical tests to
empirically determine the exponents &fand 5 in

the condition number, and try to prove tlig f; re-
sult for small overlap.



Work in progess, planned extensions

e Improve theory, prove more estimates.

e Implementing and analyzing other do-
main decomposition methods, such as it-
erative substructuring methods amabr-
tar elements

e Extending methods to three dimensions.

e Extend methods to jumping or seperable
or tensora, (3.

e Numerical tests for complex case, radi-
tion boundary conditions, indefinite case
or high wave number.

e Implementation of mapped spectral ele-
ments.



